Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Cancer Med ; 12(5): 5323-5333, 2023 03.
Article in English | MEDLINE | ID: mdl-36281495

ABSTRACT

BACKGROUND: Early prediction of treatment response is crucial for the optimal treatment of advanced breast cancer. We aimed to explore whether monitoring early changes in plasma human epidermal growth factor receptor 2 (HER2) levels using digital PCR (dPCR) could predict the treatment response in advanced breast cancer. METHODS: This was a multicenter, prospective, noninterventional clinical study of patients with advanced breast cancer. All enrolled patients underwent blood testing to measure the HER2 levels by digital PCR before treatment initiation and once every 3 weeks during the study. The primary endpoints werea the diagnostic value of dPCR for detecting HER2 status in the blood andb the relevance of potential changes in the plasma HER2 level at 3 weeks from baseline for predicting treatment response. RESULTS: Overall, 85 patients were enrolled between October 9, 2018, and January 23, 2020. dPCR had a specificity of 91.67% (95% CI: 80.61% to 97.43%) for detecting HER2 amplification, and the area under the receiver operating characteristic (ROC) curve was 0.84 (p < 0.01). A clinically relevant specificity threshold of approximately 90%, which was equivalent to a ≥15% decrease in the plasma HER2 ratio at 3 weeks from baseline, showed a positive predictive value of 97.37% (95% CI: 77.11% to 98.65%) in terms of predicting clinical benefit. Patients whose plasma HER2 ratio was reduced by ≥15% had a longer median progression-free survival (PFS) than those whose ratio was reduced by <15% (9.20 months vs. 4.50 months, p < 0.01). CONCLUSIONS: Early changes in the plasma HER2 ratio may predict the treatment response in patients with advanced breast cancer and could facilitate optimal treatment selection.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/therapy , Breast Neoplasms/drug therapy , Biomarkers, Tumor/metabolism , Prospective Studies , Predictive Value of Tests , ROC Curve
2.
Breast Cancer Res Treat ; 194(2): 221-230, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35699854

ABSTRACT

BACKGROUND: Hormone receptor-positive and human epidermal growth factor receptor 2-positive (HR+/HER2+ breast cancer comprise approximately 5-10% of all invasive breast cancers. However, the lack of knowledge regarding the complexity of tumor heterogeneity in HR+/HER2+ disease remains a barrier to more accurate therapies. This study aimed to describe the tumor heterogeneity of HR+/HER2+ breast cancer and to establish a novel indicator to identify the HER2-enriched subtype in patients with HR+/HER2+ breast cancer. METHODS: First of all, a comprehensive analysis was performed on HR+/HER2+ breast cancer samples from the TCGA (n = 141) and METABRIC (n = 104) databases. We determined the distribution of PAM50 intrinsic subtypes within the two cohorts and compared the somatic mutational profile and RNA expression features between HER2-enriched and non-HER2-enriched subtypes. From this, we constructed a novel marker termed rH/E, which was calculated as ERBB2 expression quantity/(ESR1 expression quantity + 1). Secondly, we performed multiplex immunofluorescence (mIF) to evaluate HER2 and estrogen receptor (ER) expression simultaneously in the third cohort, enrolling 43 cases of early HR+/HER2+ breast cancer from Cancer Hospital, Chinese Academy of Medical Sciences (CAMS). When using mIF, rH/E was adjusted to prH/E, which was calculated as HER2-positive cells%/(ER-positive cells + 1)%. RESULTS: All four main intrinsic subtypes were identified in HR+/HER2+ breast cancer, of which the luminal B subtype was the most common, followed by the HER2-enriched and luminal A subtypes. Significantly increased TP53 and ERBB3 and decreased PIK3CA somatic mutation frequency were observed in the HER2-enriched subtype compared with the non-HER2-enriched subtype. In addition, the HER2-enriched subtype was characterized by significantly higher ERBB2 and lower ESR1 expression. We then constructed a marker termed rH/E to reflect the relative expression of ERBB2 to ESR1 in each patient. rH/E discriminates the HER2-enriched subtype from the better than the expression of ERBB2 or ESR1 alone. In the CAMS cohort, we observed four subtypes of tumor cells: ER+/HER2-, ER+/HER2+, ER-/HER2+, and ER-/HER2-. Tumor cell diversity was common, with 86% of patients having all four subtypes of tumor cells. Moreover, prH/E showed a significant prognostic association in the CAMS cohort. CONCLUSIONS: This study furthers our understanding of the complexity of tumor heterogeneity in HR+/HER2+ breast cancer, and suggests that the combined analysis of ERBB2 and ESR1 expression may contribute to identifying patients with specific subtypes in this population.


Subject(s)
Breast Neoplasms , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Female , Humans , Prognosis , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism
3.
Front Oncol ; 11: 759595, 2021.
Article in English | MEDLINE | ID: mdl-34926260

ABSTRACT

This study aimed to evaluate and compare the effects of various endocrine therapies on lipid profiles in young patients with breast cancer. A retrospective, single-center study was performed to investigate the effects of tamoxifen (TAM), tamoxifen plus ovarian function suppression (TAM+OFS), and aromatase inhibitors plus ovarian function suppression (AI+OFS) on lipid profiles during the 60 months of endocrine therapy in hormone receptor-positive patients aged <40 with early breast cancer. The primary endpoint was the cumulative incidence of lipid events, and the secondary endpoints were the changes in lipid profiles. A total of 230 young patients were included with the mean age of 35.7 years old. The patients in TAM group had significantly lower incidence of 5-year lipid events than those in TAM+OFS group (7.4% versus 21.3%; P=0.016) and AI+OFS group (7.4% versus 21.6%; P=0.009). The incidence of fatty liver was significantly higher in TAM+OFS group than TAM group (52.5%versus 30.9%; P=0.043). Lipid events were associated with younger age (odds ratio (OR)=0.865, 95% confidence interval (CI): 0.780-0960; P=0.006), higher baseline LDL-C (OR=14.959, 95% CI: 4.379-51.105; P<0.001), and use of OFS (OR=3.557, 95% CI: 1.151-10.989; P=0.027). Therefore, application of OFS, with younger age and higher baseline LDL-C, may increase the incidence of lipid events in premenopausal breast cancer. More care should be taken for lipid profiles during the endocrine therapy for young breast cancer patients.

SELECTION OF CITATIONS
SEARCH DETAIL